1.88 A crystal structure of the C domain of hCyP33: a novel domain of peptidyl-prolyl cis-trans isomerase.

نویسندگان

  • Tao Wang
  • Cai-Hong Yun
  • Shen-Yan Gu
  • Wen-Rui Chang
  • Dong-Cai Liang
چکیده

Cyclophilins (CyPs) are a widespreading protein family in living organisms and possess the activity of peptidyl-prolyl cis-trans isomerase (PPIase), which is inhibited by cyclosporin A (CsA). The human nuclear cyclophilin (hCyP33) is the first protein which was found to contain two RNA binding domains at the amino-terminus and a PPIase domain at the carboxyl-terminus. We isolated the hCyP33 gene from the human hematopoietic stem/progenitor cells and expressed it in Escherichia coli, and determined the crystal structure of the C domain of hCyP33 at 1.88 A resolution. The core structure is a beta-barrel covered by two alpha-helices. Superposition of the structure of the C domain of hCyP33 with the structure of CypA suggests that the C domain contains PPIase active site which binds to CsA. Furthermore, C domain seems to be able to bind with the Gag-encoded capsid (CA) of HIV-1 and may affect the viral replication of HIV-1. A key residue of the active site is changed from Ala-103-CypA to Ser-239-hCyP33, which may affect the PPIase domain/substrates interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression

Growth factor receptor bound protein-7 (Grb7) is a multi-domain adaptor protein that is co-opted by numerous tyrosine kinases involved in various cellular signaling and functions. The molecular mechanisms underlying the regulation of Grb7 remain unclear. Here, we revealed a novel negative post-translational regulation of Grb7 by the peptidyl-prolyl cis/trans isomerase, Pin1. Our data show that ...

متن کامل

Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B.

We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in th...

متن کامل

The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability.

The heterodimeric hypoxia-inducible transcription factors (HIFs) are central regulators of the response to low oxygenation. HIF-alpha subunits are constitutively expressed but rapidly degraded under normoxic conditions. Oxygen-dependent hydroxylation of two conserved prolyl residues by prolyl-4-hydroxylase domain-containing enzymes (PHDs) targets HIF-alpha for proteasomal destruction. We identi...

متن کامل

The Arabidopsis thaliana PIN1At gene encodes a single-domain phosphorylation-dependent peptidyl prolyl cis/trans isomerase.

A homologue of the human site-specific prolyl cis/trans isomerase PIN1 was identified in Arabidopsis thaliana. The PIN1At gene encodes a protein of 119 amino acids that is 53% identical with the catalytic domain of the human PIN1 parvulin. Steady-state PIN1At mRNA is found in all plant tissues tested. We show by two-dimensional NMR spectroscopy that the PIN1At is a prolyl cis/trans isomerase wi...

متن کامل

Novel spiroannulated 3-benzofuranones. Synthesis and inhibition of the human peptidyl prolyl cis/trans isomerase Pin1.

The novel 3H-spiro[1-benzofuran-2-cyclopentan]-3-one skeleton has been made accessible by different routes. One- and two-step protocols lead to tricyclic and tetracyclic benzofuranones 2 and 3, respectively. A four-step synthesis to spirocompound 4 is described. The novel spirocyclic benzofuranones display modest to no inhibition of the human peptidyl prolyl cis/trans isomerase Pin1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 333 3  شماره 

صفحات  -

تاریخ انتشار 2005